

Datenblatt

Volumenstromregler (PN 16) AVQ - Einbau im Vor- und Rücklauf

Beschreibung

AVQ ist ein selbsttätiger Volumenstromregler für den Einsatz überwiegend in Fernwärmeanlagen. Der Regler schließt, wenn der eingestellte maximale Volumenstrom überschritten wird.

Der Regler besteht aus einem Regelventil mit einstellbarer Volumenstrombegrenzung und einem Antrieb mit einer Stellmembrane.

Eigenschaften:

- DN 15-32
- k_{vs} 1.6-10 m³/h
- Durchflussbereich 0.06-7.3 m³/h
- PN 16
 - Volumenstrombegrenzung (Δp): 0.2 bar
- Medium:
 - Zirkulationswasser/glykolhaltiges Wasser bis zu 30 % 2 \dots 150 °C
- Anschlüsse:
 - Außengewinde (Anschweißende, anschraubende und Flanschendstücke)

Bestellung

Beispiel:

Durchflussregler; DN 15; $k_{\rm vs}$ 1.6; PN 16; Volumenstromregler Δp 0.2 bar; $T_{\rm max}$ 150 °C, Außengewinde

 1× AVQ DN 15 Regler Bestell-Nr.: 003H6711

Wahlweise:

 1× Anschweißende Endstücke Bestell-Nr.: 003H6908

Der Regler wird komplett montiert geliefert, einschließlich der Steuerleitung zwischen Ventil und Antrieb.

AVQ Regler

Bild	DN (mm)	k vs (m³/h)	Anschlussart	Bestell-Nr.	
_		1.6			003H6711
		2.5		G 3/4 A	003H6712
d 5 3 1 1	15	4.0	zylindr. Außengewinde nach		003H6713
	20	6.3	ISO 228/1	G 1 A	003H6714
	25	8.0		G 1¼ A	003H6715
	32	10		G 1¾ A	003H6716

Zubehör

Bild	Typenbezeichnung		Anschlussart	Bestell-Nr.			
		15		003H6908			
	Anschweißende Endstücke	20		003H6909			
		25	_	003H6910			
		32		003H6911			
	Anschraubende Endstücke (Außengewinde)	15	Conical ext. thread acc. to EN 10226-1	R 1/2	003H6902		
		20		R ¾	003H6903		
		25		R 1	003H6904		
		32		R 11/4	003H6905		
	Flanschendstücke		$_{-}$ \sqcap	15			003H6915
		20	Flansche PN 25, nach EN 1092-2		003H6916		
		25			003H6917		

© Danfoss | 2019.12 Al083486472513de-000402 | 1

Danfoss

Bestellung (Fortsetzung)

Ersatzteilesets

satztenesets					
Bild	Typenbezeichnung	DN	k_{vs} (m³/h)	Bestell-N	
			1.6	003H686	
		15	2.5	003H686	
	land an area of the second sec		4.0	003H686	
	Innengarnitur	20	6.3	003H686	
		25	8.0	003H6867	
		32	10		
	Stellantrieb		Eingestellter Sollwert (bar)	Bestell-N	
	5.0		0.2	003H682	

Technische Daten

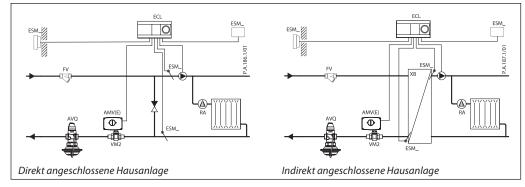
Ventil

Nennweite			DN	15			20	25	32	
k _{vs} -Wert				1.6	2.5	4.0	6.3	8.0	10	
Einstellbereich	max. $\Delta p_b^{(1)} = 0.2 \text{ bar}$		von	m³/h	0.06	0.08	0.09	0.1	0.1	0.15
Volumenstrom			bis		1.4	1.8	2.7	4.5	6.0	7.3
Kavitationswert z					≥ 0.6 ≥ 0.55).55
Leckrate nach IEC 534			% des k _{vs}	≤ 0.02 ≤ 0.05					≤ 0.05	
Nenndruck			PN	25						
Min. Differenzdru	uck			bar	siehe Bemerkung ²⁾					
Max. Differenzdr	uck			Dar	12					
Medium					Zirkulationswasser/glykolhaltiges Wasser bis zu 30 %					
Medium pH-Wert				min. 7, max. 10						
Mediumstemperatur			°C	2 150						
Anschlüsse Ventil Anschlussteile			Außengewinde							
		toilo.		Anschweißender und anschraubender						
		Anschlusstelle		Flansch					-	
Werkstoffe										
Ventilgehäuse					Rotguss CuSn5ZnPb (Rg5)					
Ventilsitz				Edelstahl, mat. Nr. 1.4571						
Ventilkegel					entzinkungsfreies Messing CuZn36Pb2As					
Dichtung				EPDM						
Druckentlastungssystem				Kolben						

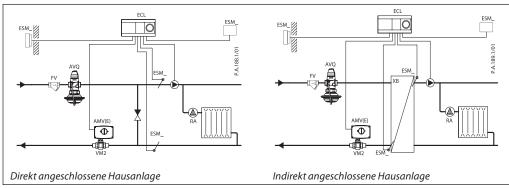
 $^{^{1)}}$ Δp_b - Differenzdruck über der Volumenstrombegrenzung

Stellantrieb

Тур		AVQ			
Größe Stellantrieb cm²		39			
Nenndruck PN		16			
Volumenstrombegrenzung Differenzdruck	bar	0.2			
Werkstoffe					
Gehäuse Stellantrieb		verzinkter Stahl, DIN 1624, W-Nr. 1.0338			
Membran		EPDM			
Steuerleitung		Kupferrohr Ø 6 × 1 mm			

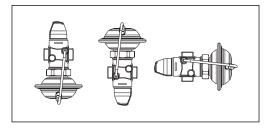

2 | Al083486472513de-000402 © Danfoss | 2019.12

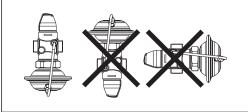
²⁾ Abhängig von Durchflussrate und Ventil k_{VS} ; für $Q_{set} = Q_{max} -> \Delta p_{min} \ge 0.5$ bar; For $Q_{set} < Q_{max} -> \Delta p_{min} = \left(\frac{Q}{k_{VS}}\right)^2 + \Delta p_b$

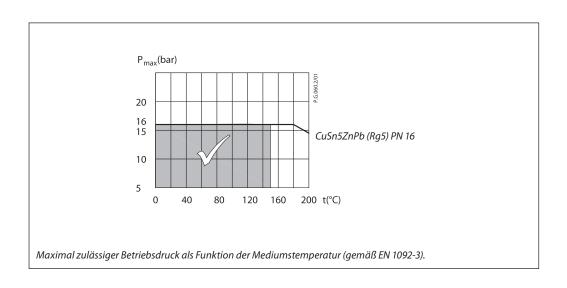


Anwendungsbeispiele

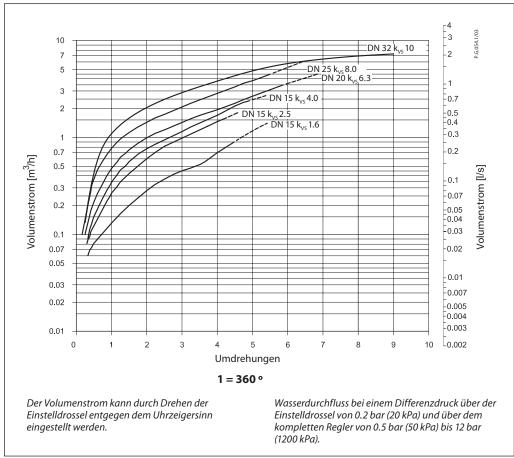
- Einbau im Rücklauf




- Einbau im Vorlauf


Einbaulagen

Die Einbaulage ist bis zu einer Mediumstemperatur von 100 °C beliebig. Bei höheren Temperaturen dürfen die Regler nur in waagerechte Rohrleitungen mit nach unten hängendem Druckantrieb eingebaut werden.


Druck-Temperatur-Diagramm

Danfoss

Volumenstrom-Kennlinie

Dimensionierungs- und Einstelldiagramm Verhältnis von tatsächlichem Volumenstrom und Zahl der Umdrehungen an der Einstelldrossel. Die angegebenen Werte sind als Richtwerte zu betrachten.

Hinweis:

Für die Einstellung des max. Durchflusses siehe die Reglerdiagramme in der Anleitung.

4 | Al083486472513de-000402 © Danfoss | 2019.12

Auslegung

Direkt angeschlossene Hausanlage

Beispiel 1

Ein elektr. Stellgerät (MCV) für den Mischkreis in einer direkt angeschlossenen Hausanlage benötigt einen Differenzdruck von 0.2 bar (20 kPa) und einen Volumenstrom von weniger als 900 l/h.

Daten:

 Q_{max} $= 0.9 \text{ m}^3/\text{h} (900 \text{ l/h})$ Δp_{min} = 0.8 bar (80 kPa)= 0.1 bar (10 kPa) Δp_{Kreis} Δp_{MCV} = 0.2 bar (20 kPa) gewählt = 0.2 bar (20 kPa)

 Δp_b

Anmerkung:
¹⁾ Δp_{Kreis} entspricht dem erforderlichen Pumpendruck im Heizkreis und wird nicht bei der Dimensionierung des AVQ

 Δp_b ist der Differenzdruck über der Volumenstrombegrenzung.

Der gesamte (verfügbare) Druckverlust über den Regler beträgt:

$$\Delta p_{AVQ,A} = \Delta p_{min} - \Delta p_{MCV} = 0.8 - 0.2$$

$$\Delta p_{MCV} = 0.6 \text{ bar} (60 \text{ kPa})$$

 $\Delta p_{AVQ,A} = 0.6 \text{ bar (60 kPa)}$

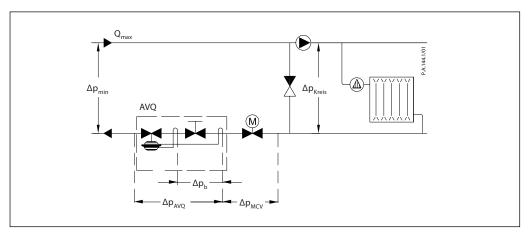
Mögliche Druckverluste in Rohren, Absperrarmaturen, Wärmezählern usw. sind nicht einbezogen.

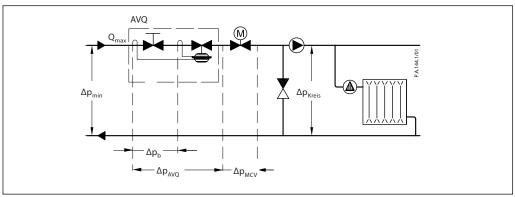
Wählen Sie unter Beachtung erhältlicher Volumenstrombereiche aus den Volumenstrom-Kennlinien (Seite 4) die Kennlinie mit dem kleinstmöglichen $k_{\rm VS}$ -Wert aus.

$$k_{VS} = 1.6 \text{ m}^3/\text{h}$$

Der mindestens erforderliche Differenzdruck über dem gewählten Regler wird anhand der folgenden Formel berechnet:

$$\Delta p_{\text{AVQ,MIN}} = \left(\frac{Q_{\text{max}}}{k_{\text{VS}}}\right)^2 + \Delta p_b = \left(\frac{0.9}{1.6}\right)^2 + 0.2$$


$$\Delta p_{AVQ,MIN} = 0.52 \text{ bar (52 kPa)}$$


$$\Delta p_{AVQ,A} > \Delta p_{AVQ,MIN}$$

0.6 bar > 0.52 bar

Lösung:

In dem Beispiel wird der Regler AVQ DN 15, $k_{\rm vs}$ -Wert 1.6, Volumenstrom-Einstellbereich 0.06-1.4 m³/h gewählt.

Danfoss

Auslegung (Fortsetzung)

 Indirekt angeschlossene Hausanlage

Beispiel 2

Ein elektr. Stellgerät (MCV) für eine indirekt angeschlossene Hausanlage benötigt einen Differenzdruck von 0.3 bar (30 kPa) und einen Volumenstrom von weniger als 1500 l/h.

Daten:

 $\begin{array}{ll} Q_{max} & = 1.5 \text{ m}^3/\text{h} \ (1500 \text{ l/h}) \\ \Delta p_{min} & = 1.1 \text{ bar} \ (110 \text{ kPa}) \\ \Delta p_{Tauscher} & = 0.1 \text{ bar} \ (10 \text{ kPa}) \\ \Delta p_{MCV} & = 0.3 \text{ bar} \ (30 \text{ kPa}) \text{ gewählt} \end{array}$

 $\Delta p_{MCV} = 0.3 \text{ bar (30 kPa)}$ $<math>\Delta p_b^{-1)} = 0.2 \text{ bar (20 kPa)}$

Anmerkung:

 $^{1)}$ Δp_b ist der Differenzdruck über der Volumenstrombegrenzung.

Der gesamte (verfügbare) Druckverlust über den Regler beträgt:

$$\begin{array}{ll} \Delta p_{\text{AVQ,A}} &= \Delta p_{\text{min}} - \Delta p_{\text{Tauscher}} - \Delta p_{\text{MCV}} \\ &= 1.1 - 0.1 - 0.3 \end{array}$$

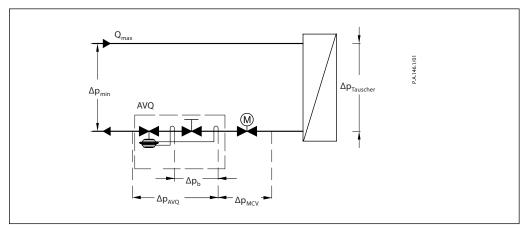
 $\Delta p_{AVQ,A} = 0.7 \text{ bar (70 kPa)}$

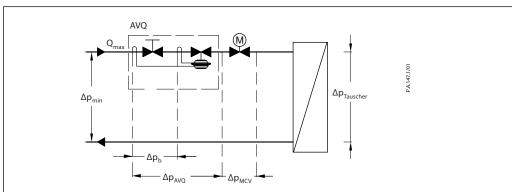
Mögliche Druckverluste in Rohren, Absperrarmaturen, Wärmezählern usw. sind nicht einbezogen. Wählen Sie aus den Volumenstrom-Kennlinie Volumenstrom-Kennlinien (Seite 4) die Kennlinie mit dem kleinstmöglichen $\mathbf{k}_{\text{VS}}\text{-Wert}$ aus, bei der \mathbf{Q}_{max} noch einstellbar ist.

$$k_{vs} = 2.5 \text{ m}^3/\text{h}$$

Der mindestens erforderliche Differenzdruck über dem gewählten Regler wird anhand der folgenden Formel berechnet:

$$\Delta p_{\text{AVQ,MIN}} = \left(\frac{Q_{\text{max}}}{k_{\text{VS}}}\right)^2 + \Delta p_b = \left(\frac{1.5}{2.5}\right)^2 + 0.2$$

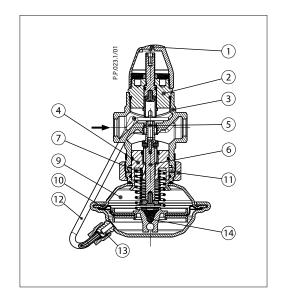

 $\Delta p_{AVQ,MIN} = 0.56 \text{ bar (56 kPa)}$


 $\Delta p_{AVQ,A} > \Delta p_{AVQ,MIN}$

0.7 bar > 0.56 bar

Lösung:

In dem Beispiel wird der Regler AVQ DN 15, k_{vs} value 2.5, -Wert 2.5, Volumenstrom-Einstellbereich 0.08-1.8 m³/h gewählt.



Design

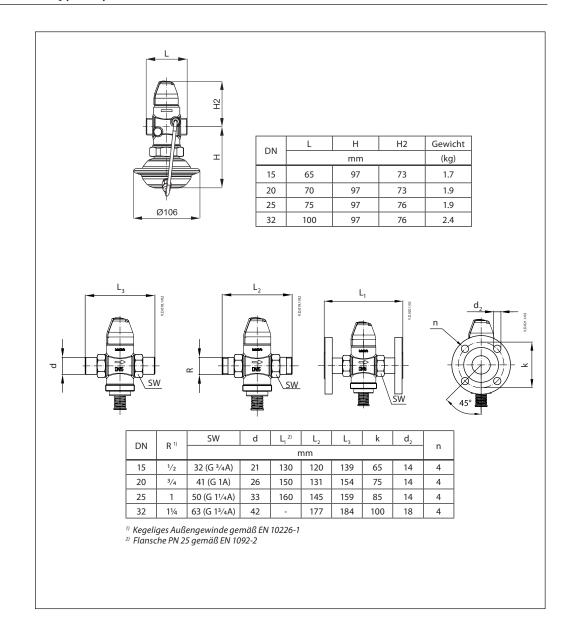
- 1. Abdeckung
- 2. Volumenstromregler
- 3. Ventilgehäuse
- 4. Innengarnitur
- **5.** Ventilkegel (druckentlastet)
- **6.** Ventilstange
- **7.** Eingebaute Feder für die Volumenstromregelung
- 8. Bohrung zur Druckdurchführung
- 9. Stellantrieb
- **10.** Stellmembrane für die Volumenstromregelung
- 11. Überwurfmutter
- 12. Steuerleitung
- **13.** Verschraubung für die Steuerleitung
- **14.** Druckbegrenzung-Sicherheitsventil

Funktionsprinzip

Das Durchflussvolumen führt zu einem Druckabfall über dem einstellbaren Volumenflussregler. Der entstandenen Druck wird über die Steuerleitungen und/oder die Bohrung in der Antriebsstange auf die Antriebskammern übertragen und wirkt auf die Stellmembran für die Durchflusssteuerung. Der Differenzdruck der Volumenstrombegrenzung wird durch die

eingebaute Feder gesteuert und begrenzt. Der

Regler schließt bei steigendem und öffnet bei fallendem Differenzdruck, um den maximalen Volumenstrom zu steuern.


Der Regler ist mit einem Druckbegrenzungsventil ausgestattet, das die Stellmembrane des Vorlaufs vor einem zu hohen Differenzdruck schützt.

Einstellungen

Einstellung des Volumenstroms Die Einstellung der Volumenstrombegrenzung erfolgt über den Hub der Einstelldrossel. Der Wert kann mit Hilfe des Einstelldiagramms für den Volumenstrom (Richtwert; siehe hierzu die entsprechende Bedienungsanleitung) und/oder des Wärmezählers eingestellt werden.

Abmessungen

Danfoss GmbH, Deutschland: danfoss.de • +49 69 80885 400 • E-Mail: CS@danfoss.de **Danfoss Ges.m.b.H., Österreich:** danfoss.at • +43 720 548 000 • E-Mail: CS@danfoss.at **Danfoss AG, Schweiz:** danfoss.ch • +41 61 510 00 19 • E-Mail: CS@danfoss.ch

Die in Katalogen, Prospekten und anderen schriftlichen Unterlagen, wie z.B. Zeichnungen und Vorschlägen enthaltenen Angaben und technischen Daten sind vom Käufer vor Übernahme und Anwendung zu prüfen. Der Käufer kann aus diesen Unterlagen und zusätzlichen Diensten keinerlei Ansprüche gegenüber Danfoss oder Danfoss Mitarbeitern ableiten, es sei denn, dass diese vorsätzlich oder grob fahrlässig gehandelt haben. Danfoss behält sich das Recht vor, ohne vorherige Bekanntmachung im Rahmen des Angemessenen und Zumutbaren Änderungen an ihren Produkten – auch an bereits in Auftrag genommenen – vorzunehmen. Alle in dieser Publikation enthaltenen Warenzeichen sind Eigentum der jeweiligen Firmen. Danfoss und alle Danfoss Logos sind Warenzeichen der Danfoss A/S. Alle Rechte vorbehalten.