oventrop

Datenblatt

Verwendungsbereich:

Oventrop Strangregulierventile "Hydrocontrol VGC" werden in die Strangleitungen von Warmwasser-Zentralheizungsanlagen und Kühlanlagen eingebaut und ermöglichen den hydraulischen Abgleich der Strangleitungen untereinander.

Der Einsatz der Strangregulierventile ist sowohl im Vorlauf als auch im Rücklauf möglich.

Beim Einbau ist darauf zu achten, dass die Armatur immer in Pfeilrichtung durchströmt wird und vor der Armatur ein gerades Rohrstück mit L = 3 x Ø und hinter der Armatur ein gerades Rohrstück mit L = 2 x Ø vorhanden ist.

Vorteile:

- montage- und bedienungsfreundlich durch die auf einer Seite gelegenen Funktionselemente
- nur eine Armatur für 5 Funktionen:

Voreinstellen

Messen

Absperren

Füllen (mit Zubehör) Entleeren (mit Zubehör)

- geringer Druckverlust durch Schrägsitzausführung
- stufenlose Voreinstellung mit in Blickrichtung drehbarer Anzeige, Druckverlust und Durchfluss über Messventile genau prüfbar
- F+E-Kugelhahn und Messventil mit O-Ring zum Ventilgehäuse hin abgedichtet (keine zusätzliche Abdichtung notwendig)
- durch die patentrechtlich geschützte Messanordnung (Messkammer ist um den Ventileinsatz zum Messanschluss herumgeführt) stimmt die an den Messventilen gemessene Druckdifferenz mit der tatsächlichen Druckdifferenz des Ventiles nahezu überein

Mit den Grauguss-Strangregulierventilen "Hydrocontrol VGC" ist die Heizungsanlage gemäß VOB DIN 18380 hydraulisch abgleichbar.

Funktion:

Der Abgleich der Strangleitungen erfolgt über eine reproduzierbare Voreinstellung.

Der errechnete Volumenstrom bzw. Druckabfall kann für jeden einzelnen Strang zentral vorreguliert und präzise eingestellt werden.

Die erforderlichen Voreinstellwerte sind den Durchflussdiagrammen zu entnehmen. Alle Zwischenwerte sind stufenlos einstellbar.

Die gewählte Voreinstellung ist an zwei Skalen ablesbar (Grundeinstellung Längsskala und Feineinstellung, Umfangsskala, siehe Abb. Voreinstellung).

Der eingestellte Voreinstellwert ist reproduzierbar durch Öffnen des Ventiles bis zum Anschlag.

Die Durchflussdiagramme gelten für den Einsatz der Strangregulierventile im Vor- und Rücklauf, wenn die Strömungsrichtung mit der Pfeilrichtung übereinstimmt.

Die Oventrop Strangregulierventile besitzen 2 Anschlussbohrungen, in die Messventile zur Messung der Druckdifferenz eingeschraubt sind. (Auslieferungszustand)

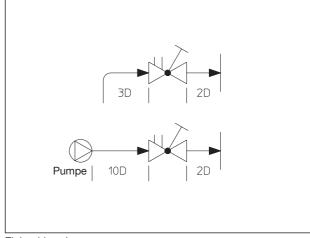
Einbau, Transport und Lagerung: Achtung:

- gegen äußere Gewalt (wie Schlag, Stoß, Vibration usw.) schützen
- Armaturaufbauten wie Handräder, Messventile dürfen nicht zur Aufnahme von äußeren Kräften, wie z. B. als Anbindungspunkte für Hebezeuge etc. zweckentfremdet werden
- es müssen geeignete Transport- und Hebemittel verwendet werden
- Lagerung bei -20 °C bis +60 °C

Anschluss:

Rollnut für Anschlusskupplungen

Geeignet für Kupplungen der Systeme:


- Victaulic
- Grinnell

"Hydrocontrol VGC" DN 65 - DN 150

"Hydrocontrol VGC" DN 200 – DN 300

Einbauhinweise

Strangregulierventil DN 65 – DN 150 "classic"-Messtechnik

Ausschreibungstext:

Oventrop Strangregulierventile, mit gesicherter, jederzeit kontrollierbarer und stufenloser Voreinstellung durch Hubbegrenzung.

Ventilgehäuse aus Grauguss (GG 25 EN-GJL-250 nach DIN EN 1561), Kopfstück, Kegel und Spindel aus Rotguss/entzinkungsbeständigem Messing. Kegel mit Dichtung aus PTFE. Wartungsfreie Spindelabdichtung durch doppelten O-Ring aus EPDM. Rollnut für Anschlusskupplungen.

Alle Funktionselemente auf der Handradseite. Messventil und F+E-Kugelhahn untereinander austauschbar.

Technische Daten:

max. Betriebstemperatur t_s: 150 °C min. Betriebstemperatur t_s: -10 °C max. Betriebsdruck p_s: 25 bar

Baulänge nach DIN EN 558-1 (Grundreihe 1)

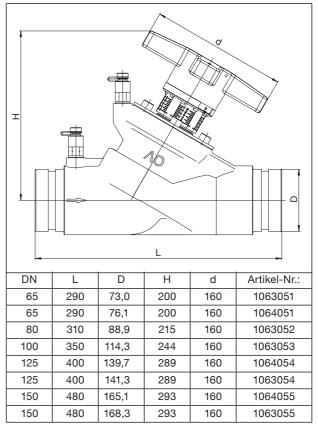
Größe:	Artikel-Nr.:
DN 65	1063051
DN 65	1064051
DN 80	1063052
DN 100	1063053
DN 125	1064054
DN 125	1063054
DN 150	1064055
DN 150	1063055

Voreinstellung DN 65-DN 150:

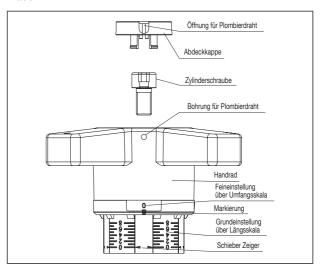
- Den Voreinstellwert am Strangregulierventil durch Drehen des Handrades einstellen.
 - a. Die Anzeige der Grundeinstellung erfolgt durch die Längsskalen in Verbindung mit dem Querstrich des Schiebers.
 - Eine Umdrehung des Handrades entspricht jeweils dem Abstand der Skalenstriche der Längsskala.
 - b. Die Anzeige der Feineinstellung erfolgt durch die Umfangsskala am Handrad in Verbindung mit der Markierung. Die Einteilung der Umfangsskala entspricht 1/10 Umdrehung des Handrades.
- Begrenzung des eingestellten Voreinstellwertes durch Verdrehen der innenliegenden Einstellspindel im Uhrzeigersinn bis zum Anschlag. Dazu das lange Ende eines Inbusschlüssels (SW 4) verwenden.

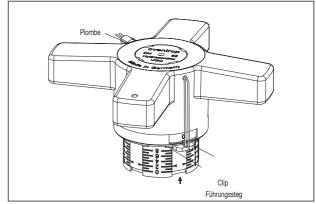
Ablesbarkeit der Voreinstellskalen:

Je nach Einbaulage des Strangregulierventiles kann zur Verbesserung der Ablesbarkeit die Skala verdreht werden. Dazu ist das Ventil zu schließen, bis beide Skalen '0' zeigen. Dann Abdeckkappe abziehen, Schraube herausdrehen und das Handrad mit einem leichten Ruck von der Ventilspindel abziehen. Danach ohne Veränderung der Einstellung ('0' Anzeige) das Handrad so drehen, dass das Fenster der Umfangsskala gut sichtbar ist. Dann das Handrad wieder auf die Ventilspindel aufdrücken und befestigen.


Abdeckkappe aufdrücken.

Sicherung der Voreinstellung:


Den Plombierdraht (im Lieferumfang enthalten), bei eingedrückter Abdeckkappe, durch die Bohrung des Handrades schieben und verplomben.


Blockierung des Handrades:

Das Handrad kann in allen Anzeigewerten (1/10 Anzeige) blockiert werden. Dazu den beiliegenden Clip in die Ausnehmung des Handrades, unterhalb der Bohrung zwischen den Führungsstegen, bis zum Anschlag einschieben (siehe Skizze). Der Clip kann in der dargestellten Weise plombiert werden. Dabei muss der Plombierdraht stramm am Handrad anliegen.

Maße

3.6-2 2020 Oventrop

Strangregulierventil DN 200 – DN 300 "classic"-Messtechnik

Ausschreibungstext:

Oventrop Strangregulierventile, mit gesicherter, jederzeit kontrollierbarer und stufenloser Voreinstellung durch Hubbegrenzung.

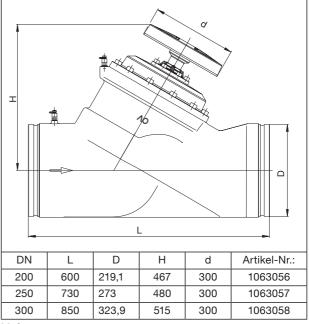
Ventilgehäuse aus Grauguss (GG 25 EN-GJL-250 nach DIN EN 1561), Kopfstück aus Sphäroguss (GGG 40 EN-GJS-400-15 nach DIN EN 1563), Kegel aus Rotguss, Spindel aus entzinkungsbeständigem Messing. Kegel mit Dichtung aus PTFE. Wartungsfreie Spindelabdichtung durch doppelten O-Ring aus EPDM. Rollnut für Anschlusskupplungen.

Alle Funktionselemente auf der Handradseite. Messventil und F+E-Kugelhahn untereinander austauschbar.

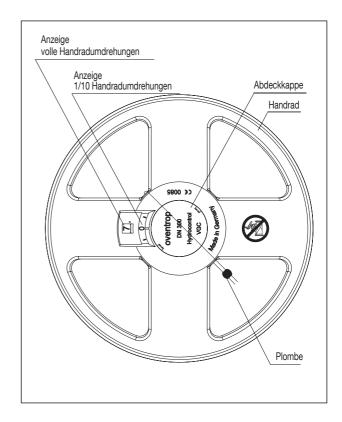
Technische Daten:

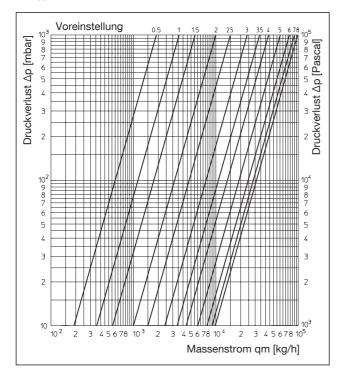
 $\begin{array}{ll} \text{max. Betriebstemperatur } t_{\text{S}} : & 150 \text{ }^{\circ}\text{C} \\ \text{min. Betriebstemperatur } t_{\text{S}} : & -10 \text{ }^{\circ}\text{C} \\ \text{max. Betriebsdruck } p_{\text{S}} : & 25 \text{ bar} \\ \end{array}$

Baulänge nach DIN EN 558-1 (Grundreihe 1)


Größe:	Artikel-Nr.:
DN 200	1063056
DN 250	1063057
DN 300	1063058

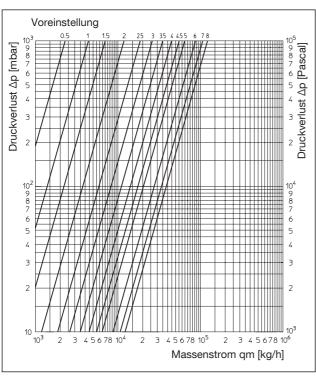
Voreinstellung DN 200-DN 300:


- 1. Den Voreinstellwert am Strangregulierventil durch Drehen des Handrades einstellen.
 - a. Die vollen 12 Handradumdrehungen werden durch die äußere Anzeige dargestellt.
 - b. Die 1/10 Handradumdrehungen werden durch die innere Anzeige dargestellt.
- 2. Abdeckkappe abziehen.
 - Mit einem Schraubendreher in die Öffnungen der Abdeckkappe greifen und aushebeln.
- Begrenzung des eingestellten Voreinstellwertes durch Verdrehen der innenliegenden Einstellspindel im Uhrzeigersinn bis zum Anschlag. Dazu einen Schraubendreher der Größe 10 verwenden.
- 4. Abdeckkappe aufdrücken.


Sicherung der Voreinstellung:

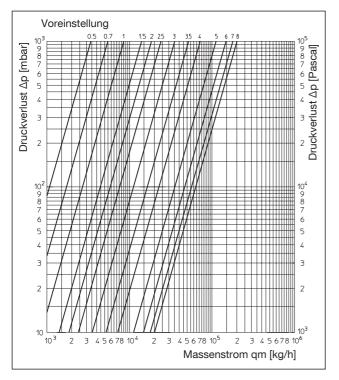
Den Plombierdraht (im Lieferumfang enthalten), bei eingedrückter Abdeckkappe, durch die Bohrung des Handrades schieben und verplomben.

Maße



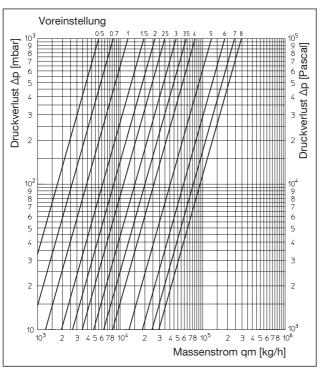
Vorein- stellung	k _V -Werte	Zeta-Werte	Vorein- stellung	k _V -Werte	Zeta-Werte
0.5 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	1.90 3.60 4.12 4.49 4.86 5.23 5.60 6.43 7.29 8.17 9.07 10.00 10.95 11.91 12.92 13.94 15.00 16.66 18.38 20.14 21.95	8454 2355 1798 1514 1292 1116 973 738 574 457 371 305 255 215 183 157 136 110 90 75 63	5.0 5.1 5.2 5.3 5.4 5.5 5.7 5.8 5.9 6.0 6.2 6.3 6.4 6.5 6.6 6.7 6.9	61.00 63.21 64.93 66.63 68.32 70.00 71.69 73.33 74.93 76.48 78.00 79.48 80.91 82.31 83.67 85.00 86.12 87.20 88.23 89.23	8,2 7,6 7,2 6,9 6,5 6,2 5,9 5,7 5,4 5,2 5,0 4,7 4,5 4,1 4,0 3,9 3,8
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	24.00 25.73 27.70 29.74 31.84 34.00 35.93 37.84 39.74 41.63 43.50 45.36 47.20 49.03 50.85 52.00 54.45 56.23 58.00 59.74	53 46 40 35 30 26 24 21 19 18 16 15 14 13 11 10 9,1 8,6	7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0	90.00 91.13 92.02 92.89 93.71 94.50 95.27 96.00 96.70 97.36 98.00	3,8 3,7 3,6 3,5 3,5 3,4 3,3 3,2 3,1 3,0

Zeta-Werte bezogen auf den Rohrinnen-Ø nach DIN EN 10 220 (66.1 mm).

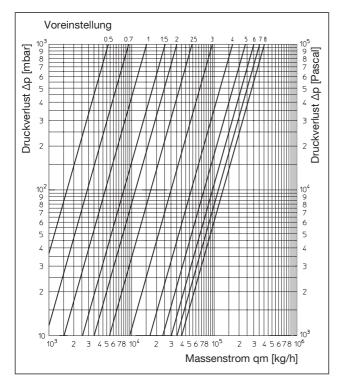

DN 80

Vorein- stellung	k _V -Werte	Zeta-Werte	Vorein- stellung	k _V -Werte	Zeta-Werte
0.5 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3	2.30 4.40 4.74 5.17 5.67 6.28 7.00 7.89 8.82 9.78 10.79 11.85 12.95 14.11 15.33 16.61 18.65 19.39 20.90 22.51 24.24 26.10 27.85 29.61 31.39	11016 3010 2594 2180 1813 1478 1189 936 749 609 500 415 347 293 248 211 168 155 133 115 99 86 75 66 59	5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3	64.60 66.98 69.32 71.63 73.90 75.45 78.37 80.56 82.72 84.85 87.00 89.04 91.00 93.13 95.14 97.55 99.10 101.04 102.96 104.87 106.75 108.39 110.00 111.60	14 13 12 11 10 9,5 8,5 8,1 7,7 7,4 7,0 6,7 6,7 6,4 6,1 5,9 5,7 5,5 5,3 5,1 5,0 4,8
3.4 3.5 3.6 3.7 3.8 3.9	33.19 35.00 36.83 38.68 40.55 42.43	53 48 43 39 35 32	7.4 7.5 7.6 7.7 7.8 7.9	113.00 114.50 116.13 117.78 119.27 120.74	4,6 4,4 4,3 4,2 4,1 4,0
4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	44.75 46.27 48.21 50.19 52.18 55.20 56.22 58.28 60.36 62.47	29 27 25 23 21 19 18 17 16	8.0	122.20	3,9

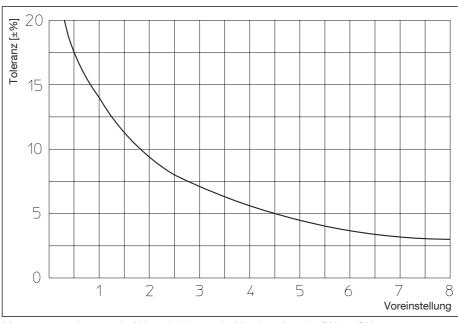
Zeta-Werte bezogen auf den Rohrinnen-Ø nach DIN EN 10 220 (77.7 mm)


3.6-4 2020 Oventrop

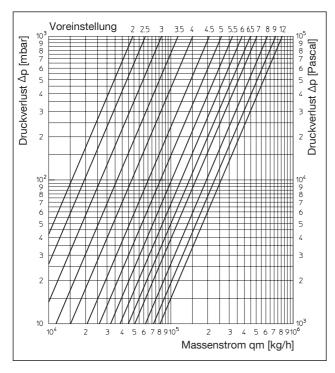
., .					
Vorein- stellung	k _V -Werte	Zeta-Werte	Vorein- stellung	k _V -Werte	Zeta-Werte
0.5 0.7	3.40 5.46	14279 5537			
1.0 1.1 1.2 1.3 1.4 1.5	8.55 9.58 10.61 11.64 12.67 14.00	2258 1799 1466 1218 1028 842 761	5.0 5.1 5.2 5.3 5.4 5.5 5.6	112.00 117.46 121.17 124.79 127.52 132.00 135.16	13 12 11 10.6 10.2 9.5 9.0
1.7 1.8 1.9	15.76 16.79 17.82	665 586 520	5.7 5.8 5.9	138.47 141.71 144.89	8.6 8.2 7.9
2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	18.50 19.88 20.91 21.94 22.97 24.00 26.00 28.13 30.40 32.81	482 418 378 343 313 287 244 209 179 153	6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	148.00 151.94 155.63 159.10 162.38 164.03 168.44 171.26 173.95 176.53	7.5 7.1 6.8 6.5 6.3 6.1 5.8 5.6 5.5 5.5
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	35.40 38.18 41.17 44.44 48.02 52.00 55.93 59.89 63.89 67.92	132 113 97 84 72 61 53 46 40 36	7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	179.01 181.37 183.65 185.85 187.96 190.04 192.37 194.66 196.85 198.96	5.2 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2
4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	72.00 76.11 80.27 84.47 88.71 93.00 97.37 101.62 105.74 109.75	32 29 26 23 21 19 17 16 15	8.0	201.00	4.1


Zeta-Werte bezogen auf den Rohrinnen-Ø nach DIN EN 10 220 (100.8 mm).

DN 125

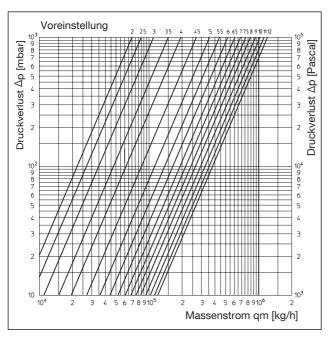

Vorein- stellung	k _V -Werte	Zeta-Werte	Vorein- stellung	k _V -Werte	Zeta-Werte
0.5 0.7	5.50 8.28	12904 5694			
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	12.45 13.84 15.23 16.62 18.01 19.40 20.94 22.47 24.01 25.54	2518 2038 1683 1413 1203 1037 890 773 677 598	5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	128.25 133.77 139.54 145.60 151.96 158.70 164.10 169.60 175.21 180.94	24 22 20 18 17 15 14 13.5 12.7 11.9
2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	26.60 28.61 30.15 31.68 33.22 34.75 37.18 39.69 42.29 44.97	552 477 429 389 354 323 282 248 218 193	6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	185.30 192.75 198.85 205.10 211.50 218.05 223.37 228.64 233.89 239.03	11.4 10.5 9.9 9.3 8.7 8.2 7.8 7.5 7.1 6.8
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	47.75 50.63 53.62 56.73 60.00 63.35 66.62 70.00 73.53 77.21	171 152 136 121 108 97 88 80 72 65	7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	244.15 249.23 254.26 259.25 264.19 268.15 273.95 278.77 283.55 287.96	6.5 6.3 6.0 5.8 5.6 5.4 5.2 5.0 4.9 4.7
4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	81.05 85.07 89.30 93.77 98.50 103.55 108.16 112.92 117.84 122.95	59 54 49 44 40 36 33 31 28 26	8.0	293.00	4.5

Zeta-Werte bezogen auf den Rohrinnen-Ø nach DIN EN 10 220 (125 mm).

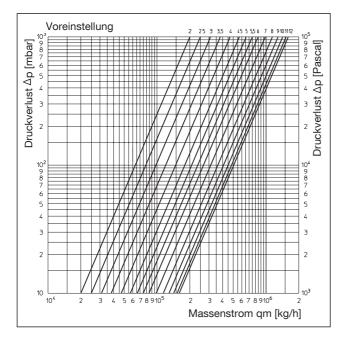

Vorein- stellung	k _V -Werte	Zeta-Werte	Vorein- stellung	k _V -Werte	Zeta-Werte
0.5 0.7	5.20 9.21	29934 9542			
1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8	15.22 17.22 19.23 21.23 23.24 25.26 27.24 29.50 31.25 33.26	3494 2730 2189 1796 1499 1269 1091 930 829 732	5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	238.91 244.72 251.20 257.60 263.90 272.40 276.24 282.30 288.27 294.17	14.0 13.5 12.8 12.2 11.6 10.9 10.6 10.2 9.7 9.4
2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	35.26 37.13 39.41 42.30 46.25 53.92 61.00 68.55 76.64 85.40	651 587 521 452 378 278 218 172 138 111	6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	300.40 305.76 311.45 317.08 322.07 326.70 333.58 338.34 344.29 349.56	9.0 8.8 8.4 8.1 7.8 7.6 7.3 7.1 6.8 6.6
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	95.02 105.51 114.45 122.36 129.52 135.45 142.21 147.41 153.33 160.00	90 73 62 54 48 44 40 37 34 32	7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	355.60 360.00 365.06 370.13 375.15 382.00 385.04 389.33 394.20 399.54	6.4 6.2 6.1 5.9 5.8 5.6 5.5 5.3 5.2 5.1
4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	167.12 174.48 181.76 189.05 196.34 203.65 210.78 217.79 224.14 231.46	29 27 25 23 21 20 18 17 16	8.0	404.30	5.0

Zeta-Werte bezogen auf den Rohrinnen-Ø nach DIN EN 10 220 (150 mm).

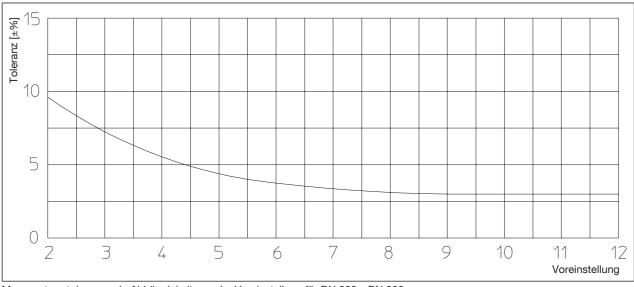
Massenstromtoleranzen in Abhängigkeit von der Voreinstellung für DN 65-DN 150


3.6-6 2020 Oventrop

	Vorein- stellung	k _V -Werte	Zeta-Werte	Vorein- stellung	k _V -Werte	Zeta-Werte	
	2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	48.9 51.6 54.2 56.8 59.4 62.0 66.4 70.8 75.2 79.6	1191 1070 969 883 807 741 646 568 504 449	7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	509.5 519.4 529.3 539.2 549.1 559.0 571.0 582.5 594.2 606.0	11 11 10 10 9 9 9 8 8	
	3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	84.0 90.0 96.0 102.0 108.0 114.0 121.0 128.8 136.2 143.6	404 352 309 274 244 219 195 172 154	8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8	618.0 626.8 634.8 634.2 651.6 660.0 672.8 685.2 698.7 711.6	7 7 7 7 7 6 6 6	
	4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	151.0 162.0 173.0 184.0 195.0 206.0 216.8 227.6 238.4 249.2	125 109 95 84 75 67 61 55 50	9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9	724.5 731.4 738.2 744.9 751.7 758.5 760.6 762.7 764.8 766.9	6 5 5 5 5 5 5 5 5 5 5	
	5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	260.3 271.9 283.8 295.6 307.5 320.0 332.0 344.8 357.6 370.3	41 38 35 33 30 28 26 24 22 21	10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9	769.0 771.2 773.4 775.6 778.0 780.0 782.0 784.0 786.0 788.0	5 5 5 5 5 5 5 5 5 5	
	6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	383.0 396.0 409.0 422.0 435.0 447.8 460.0 472.5 484.8 497.2	19 18 17 16 15 14 13 13 12	11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	790.0 792.2 794.5 796.8 799.1 801.4 804.0 806.6 809.2 812.0	5 5 5 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
- 1						ı	


Zeta-Werte bezogen auf den Rohrinnen-Ø nach DIN EN 10 220 (207.3 mm).

DN 250


Vorein- stellung	kv-Werte	Zeta-Werte	Vorein- stellung	kv-Werte	Zeta-Werte
2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	70.0 72.5 75.5 79.0 82.0 85.0 89.5 94.0 99.0 104.5	1318 1229 1133 1035 961 894 806 731 659 592	7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	682.0 698.0 714.0 729.0 745.0 760.0 778.0 795.0 811.0 826.0	14 13 13 12 12 11 11 10 10
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	110.0 117.0 123.5 130.5 139.0 150.0 155.0 164.0 174.0 184.0	534 472 424 379 334 287 269 240 213 191	8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	840.0 850.0 860.0 870.0 880.0 890.0 899.0 907.0 916.0 925.0	999888888888888
4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	195.0 208.0 221.0 236.0 252.0 270.0 287.0 304.0 321.0 338.0	170 149 132 116 102 89 78 70 63 57	9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9	933.0 942.0 952.0 961.0 970.0 980.0 989.0 998.0 1008.0 1018.0	7 7 7 7 7 7 7 6 6
5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	356.0 373.0 390.0 407.0 423.0 440.0 457.0 473.0 490.0 506.0	51 46 42 39 36 33 31 29 27 25	10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9	1028.0 1038.0 1048.0 1059.0 1071.0 1080.0 1088.0 1096.0 1104.0 1112.0	66666655555
6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8	522.0 539.0 555.0 571.0 587.0 607.0 619.0 635.0 651.0 666.0	24 22 21 20 19 18 17 16 15	11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	1120.0 1128.0 1136.0 1144.0 1152.0 1160.0 1168.0 1176.0 1184.0 1192.0 1200.0	55555555544

Zeta-Werte bezogen auf den Rohrinnen-Ø nach DIN EN 10 220 (254.4 mm).

Vorein- stellung	kv-Werte	Zeta-Werte	Vorein- stellung	kv-Werte	Zeta-Werte
2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9	200.0 210.0 220.0 230.0 240.0 250.0 261.0 273.0 285.0 297.0	325 295 269 246 226 208 191 174 160 147	7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9	990.0 1005.0 1020.0 1036.0 1053.0 1070.0 1084.0 1098.0 1112.0 1126.0	13 13 12 12 12 11 11 11 11
3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9	310.0 323.0 336.0 350.0 365.0 380.0 401.0 421.0 441.0 461.0	135 125 115 106 98 90 81 73 67 61	8.0 8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9	1140.0 1154.0 1168.0 1182.0 1196.0 1210.0 1228.0 1245.0 1261.0 1276.0	10 10 10 9 9 9 8 8
4.0 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9	480.0 499.0 517.0 535.0 553.0 570.0 588.0 606.0 624.0 642.0	56 52 49 45 43 40 38 35 33 32	9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9	1290.0 1303.0 1316.0 1328.0 1339.0 1350.0 1365.0 1379.0 1393.0 1407.0	8 8 8 7 7 7 7 7 7
5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	660.0 678.0 696.0 714.0 732.0 750.0 771.0 791.0 810.0 828.0	30 28 27 26 24 23 22 21 20	10.0 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9	1420.0 1433.0 1446.0 1457.0 1468.0 1480.0 1490.0 1500.0 1510.0 1520.0	6 6 6 6 6 6 6 6 6 6
6.0 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	845.0 861.0 877.0 892.0 906.0 920.0 933.0 947.0 961.0 975.0	18 18 17 16 16 15 15 14 14	11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9	1530.0 1539.0 1547.0 1555.0 1563.0 1577.0 1583.0 1589.0 1595.0 1600.0	©5555555555555555555555555555555555555

Zeta-Werte bezogen auf den Rohrinnen-Ø nach DIN EN 10 220 (300 mm).

Massenstromtoleranzen in Abhängigkeit von der Voreinstellung für DN 200 – DN 300

3.6-8 2020 Oventrop

Isolierschalen DN 65 - DN 150

Ausschreibungstext:

Die Isolierschalen besitzen einen FCKW-freien Innenkern aus Polyurethan-Hartschaum mit einer ca. 1.5 mm dicken Kunststoffummantelung.

Sie bestehen aus zwei Halbschalen, die mit zwei Spannbändern zusammengehalten werden.

Entspricht den Anforderungen der Energieeinsparverordnung gemäß Anhang 5, Tabelle 1, Zeile 5.

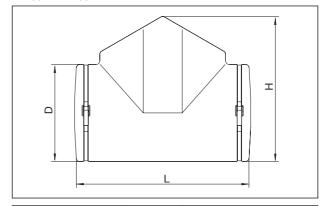
Für Heizungs- und Kühlanlagen.

Technische Daten:

Baustoffklasse B2 nach DIN 4102. Betriebstemperatur t_s: –10 °C bis +130 °C

Kälteisolierung:

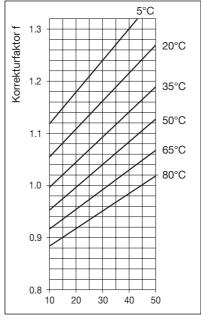
Medientemperatur min.: +6 °C

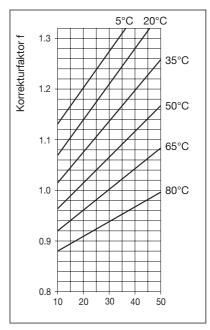

Isolierschalen luftdicht verkleben (eingeschränkte Diffusionsdichtheit bei niedrigerer Medien-, sowie hoher Umgebungstemperatur und/oder Luftfeuchtigkeit).

Größe:	Artikel-Nr.:
DN 65	1062586
DN 80	1062587
DN 100	1062588
DN 125	1062589
DN 150	1062590

Zubehör DN 65 - DN 300:

F+E Kugelhahn	1060191
Messadapter	1060298
Messventilverlängerung (80 mm)	1060295
Messventilverlängerung (40 mm)	1688295
Spindelverlängerung (DN 65 bis DN 150, 35 mm)	1688297


DN 65 - DN 150


DN	L	D	Н	Artikel-Nr.:
65	480	270	405	1062586
80	515	300	430	1062587
100	595	350	500	1062588
125	660	385	573	1062589
150	740	415	598	1062590
150	740	415	598	1062590

Korrekturfaktoren für Wasser-Glykol-Gemische:

Bei Zugabe von Frostschutzmitteln in das Heizungswasser ist der im Diagramm ermittelte Druckverlust mit dem Korrekturfaktor f zu multiplizieren.

Gewichtsanteil Propylenglykol [%]

Messen und Einregulieren DN 65 - DN 300

Oventrop Messsystem "OV-DMC 3"

für viele Funktionen und Einsatzbereiche:

- Durchflussanzeige (Anzeige in I/s, m³/h und gal/min.)
- Differenzdruckmessung (Anzeige in mbar, Pa oder kPa)
- Temperaturmessung (Anzeige in °C oder °F)
- Voreinstellung Ermittlung des Voreinstellwertes aus gemessener Druckdifferenz, vorgegebenem Durchfluss und Ventilnennweite.

Die Kennlinien aller Oventrop Strangregulierventile sind im Gerät gespeichert.

Bei der Messung an Fremdfabrikaten kann der entsprechende kv-Wert eingegeben werden.

Messsystem "OV-DMC 3" Artikel-Nr.: 1069278 mit "Hydrocontrol VGC" DN 65